航空翻译_飞行翻译_民航翻译_蓝天飞行翻译公司

当前位置: 主页 > 直升机 > 直升机资料 >

旋翼机飞行手册 ROTORCRAFT FLYING HANDBOOK

时间:2011-04-05 11:32来源:蓝天飞行翻译 作者:航空 点击:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.

Today helicopters are quite reliable. However emergencies do occur, whether a result of mechanical failure or pilot error. By having a thorough knowledge of the helicopter and its systems, you will be able to more readily handle the situation. In addition, by knowing the conditions that can lead to an emergency, many potential accidents can be avoided. 
 

AUTOROTATION
In a helicopter, an autorotation is a descending maneuver where the engine is disengaged from the main rotor system and the rotor blades are driven solely by the upward flow of air through the rotor. In other words, the engine is no longer supplying power to the main rotor.
The most common reason for an autorotation is an engine failure, but autorotations can also be performed in the event of a complete tail rotor failure, since there is virtually no torque produced in an autorotation. If altitude permits, they can also be used to recover from settling with power. If the engine fails, the freewheeling unit automatically disengages the engine from the main rotor allowing the main rotor to rotate freely. Essentially, the freewheeling unit disengages anytime the engine r.p.m. is less than the rotor r.p.m.
At the instant of engine failure, the main rotor blades are producing lift and thrust from their angle of attack and velocity. By immediately lowering collective pitch, which must be done in case of an engine failure, lift and drag are reduced, and the helicopter begins an immediate descent, thus producing an upward flow of air through the rotor system. This upward flow of air through the rotor provides sufficient thrust to maintain rotor r.p.m. throughout the descent. Since the tail rotor is driven by the main rotor transmission during autorotation, heading control is maintained as in normal flight.
Several factors affect the rate of descent in autorotation; density altitude, gross weight, rotor r.p.m., and airspeed. Your primary control of the rate of descent is airspeed. Higher or lower airspeeds are obtained with the cyclic pitch control just as in normal flight. In theory, you have a choice in the angle of descent varying from a vertical descent to maximum range, which is the minimum angle of descent. Rate of descent is high at zero airspeed and decreases to a minimum at approximately 50 to 60 knots, depending upon the particular helicopter and the factors just mentioned. As the airspeed increases beyond that which gives minimum rate of descent, the rate of descent increases again.
When landing from an autorotation, the energy stored in the rotating blades is used to decrease the rate of descent and make a soft landing. A greater amount of rotor energy is required to stop a helicopter with a high rate of descent than is required to stop a helicopter that is descending more slowly. Therefore, autorotative descents at very low or very high airspeeds are more critical than those performed at the minimum rate of descent airspeed.
Each type of helicopter has a specific airspeed at which a power-off glide is most efficient. The best airspeed is the one which combines the greatest glide range with the slowest rate of descent. The specific airspeed is somewhat different for each type of helicopter, yet certain factors affect all configurations in the same manner. For specific autorotation airspeeds for a particular helicopter, refer to the FAA-approved rotorcraft flight manual.

直升机翻译 www.aviation.cn
本文链接地址:旋翼机飞行手册 ROTORCRAFT FLYING HANDBOOK