航空翻译_飞行翻译_民航翻译_蓝天飞行翻译公司

当前位置: 主页 > 直升机 > 直升机资料 >

旋翼机飞行手册 ROTORCRAFT FLYING HANDBOOK

时间:2011-04-05 11:32来源:蓝天飞行翻译 作者:航空 点击:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.


 
 

GROUND RESONANCE
Ground resonance is a potentially damaging aerodynamic phenomenon associated with articulated rotor systems. It develops when the rotor blades move out of phase with each other and cause the rotor disc to become unbalanced. If not corrected, ground resonance can cause serious damage in a matter of seconds.
Ground resonance can only occur while the gyroplane is on the ground. If a shock is transmitted to the rotor system, such as with a hard landing on one gear or when operating on rough terrain, one or more of the blades could lag or lead and allow the rotor system’s center of gravity to be displaced from the center of rotation. Subsequent shocks to the other gear aggravate the imbalance causing the rotor center of gravity to rotate around the hub. This phenomenon is not unlike an out-of-balance washing machine. [Figure 21-2]
 

 

To reduce the chance of experiencing ground resonance, every preflight should include a check for proper strut inflation, tire pressure, and lag-lead damper operation. Improper strut or tire inflation can change the vibration frequency of the airframe, while improper damper settings change the vibration frequency of the rotor.
If you experience ground resonance, and the rotor
r.p.m. is not yet sufficient for flight, apply the rotor brake to maximum and stop the rotor as soon as possible. If ground resonance occurs during takeoff, when rotor r.p.m. is sufficient for flight, lift off immediately. Ground resonance cannot occur in flight, and the rotor blades will automatically realign themselves once the gyroplane is airborne. When prerotating the rotor system prior to takeoff, a slight vibration may be felt that is a very mild form of ground resonance. Should this oscillation amplify, discontinue the prerotation and apply maximum rotor brake. 
 

EMERGENCY APPROACH AND LANDING
The modern engines used for powering gyroplanes are generally very reliable, and an actual mechanical malfunction forcing a landing is not a common occurrence. Failures are possible, which necessitates planning for and practicing emergency approaches and landings. The best way to ensure that important items are not overlooked during an emergency procedure is to use a checklist, if one is available and time permits. Most gyroplanes do not have complex electrical, hydraulic, or pneumatic systems that require lengthy checklists. In these aircraft, the checklist can be easily committed to memory so that immediate action can be taken if needed. In addition, you should always maintain an awareness of your surroundings and be constantly on the alert for suitable emergency landing sites.
 

When an engine failure occurs at altitude, the first course of action is to adjust the gyroplane’s pitch attitude to achieve the best glide speed. This yields the most distance available for a given altitude, which in turn, allows for more possible landing sites. A common mistake when learning emergency procedures is attempting to stretch the glide by raising the nose, which instead results in a steep approach path at a slow airspeed and a high rate of descent. [Figure 21-3] Once you have attained best glide speed, scan the area within gliding distance for a suitable landing site. Remember to look behind the aircraft, as well as in front, making gentle turns, if necessary, to see around the airframe. When selecting a landing site, you must consider the wind direction and speed, the size of the landing site, obstructions to the approach, and the condition of the surface. A site that allows a landing into the wind and has a firm, smooth surface with no obstructions is the most desirable. When considering landing on a road, be alert for powerlines, signs, and automobile traffic. In many cases, an ideal site will not be available, and it will be necessary for you to evaluate your options and choose the best alternative. For example, if a steady wind will allow a touchdown with no ground roll, it may be acceptable to land in a softer field or in a smaller area than would normally be considered. On landing, use short or soft field technique, as appropriate, for the site selected. A slightly higher-than-normal approach airspeed may be required to maintain adequate airflow over the rudder for proper yaw control.

直升机翻译 www.aviation.cn
本文链接地址:旋翼机飞行手册 ROTORCRAFT FLYING HANDBOOK