航空翻译_飞行翻译_民航翻译_蓝天飞行翻译公司

当前位置: 主页 > 直升机 > 直升机资料 >

直升机飞行手册 Helicopter Flying Handbook

时间:2014-11-09 12:30来源:FAA 作者:直升机翻译 点击:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.


When recovering from a retreating blade stall condition, moving the cyclic aft only worsens the stall as aft cyclic produces a flare effect, thus increasing the AOA. Pushing forward on the cyclic also deepens the stall as the AOA on the retreating blade is increased. Correct recovery from retreating blade stall requires the collective to be lowered first, which reduces blade angles and thus AOA. Aft cyclic can then be used to slow the helicopter.
Common Errors
1.  Failure to recognize the combination of contributing factors leading to retreating blade stall.
2.  Failure to compute VNE limits for altitudes to be flown.
Ground Resonance
Helicopters with articulating rotors (usually designs with three or more main rotor blades) are subject to ground resonance, a destructive vibration phenomenon that occurs at certain rotor speeds when the helicopter is on the ground. Ground resonance is a mechanical design issue that results from the helicopter’s airframe having a natural frequency that can be intensified by an out-of-balance rotor. The unbalanced rotor system vibrates at the same frequency or multiple of the airframe’s resonant frequency and the harmonic oscillation increases because the engine is adding power to the system, increasing the magnitude (or amplitude) of the vibrations until the structure or structures fail. This condition can cause a helicopter to self-destruct in a matter of seconds.
Hard contact with the ground on one corner (and usually with wheel-type landing gear) can send a shockwave to the main rotor head, resulting in the blades of a three-blade rotor system moving from their normal 120° relationship to each other. This movement occurs along the drag hinge and could result in something like 122°, 122°, and 116° between blades. [Figure 11-6] When one of the other landing gear strikes the surface, the unbalanced condition could be further aggravated. If the rpm is low, the only corrective action to stop ground resonance is to close the throttle immediately and fully lower the collective to place the blades in low pitch. If the rpm is in the normal operating range, fly the helicopter off the ground, and allow the blades to rephase themselves automatically. Then, make a normal touchdown. If a pilot lifts off and allows the helicopter to firmly re-contact the surface before the blades are realigned, a second shock could move the blades again and aggravate the already unbalanced condition. This could lead to a violent, uncontrollable oscillation.
This situation does not occur in rigid or semi-rigid rotor systems because there is no drag hinge. In addition, skid-type landing gear is not as prone to ground resonance as wheel-type landing gear since the rubber tires are not present and change the rebound characteristics.
Dynamic Rollover
A helicopter is susceptible to a lateral rolling tendency, called dynamic rollover, when the helicopter is in contact with the surface during takeoffs or landings. For dynamic rollover to occur, some factor must first cause the helicopter to roll or pivot around a skid or landing gear wheel, until its critical rollover angle is reached. (5–8° depending on helicopter, winds, and loading) Then, beyond this point, main rotor thrust continues the roll and recovery is impossible. After this angle is achieved, the cyclic does not have sufficient range of control to eliminate the thrust component and convert it to lift. If the critical rollover angle is exceeded, the helicopter rolls on its side regardless of the cyclic corrections made.
Dynamic rollover begins when the helicopter starts to pivot laterally around its skid or wheel. This can occur for a variety of reasons, including the failure to remove a tie down or skid-securing device, or if the skid or wheel contacts a fixed object while hovering sideward, or if the gear is stuck in ice, soft asphalt, or mud. Dynamic rollover may also occur if you use an improper landing or takeoff technique or while performing slope operations. Whatever the cause, if the gear or skid becomes a pivot point, dynamic rollover is possible if not using the proper corrective technique.
直升机翻译 www.aviation.cn
本文链接地址:直升机飞行手册 Helicopter Flying Handbook