航空翻译_飞行翻译_民航翻译_蓝天飞行翻译公司

当前位置: 主页 > 直升机 > 直升机资料 >

直升机飞行手册 Helicopter Flying Handbook

时间:2014-11-09 12:30来源:FAA 作者:直升机翻译 点击:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.


Controlling Flight
A helicopter has four flight control inputs: cyclic, collective, antitorque pedals, and throttle. The cyclic control is usually located between the pilot’s legs and is commonly called the “cyclic stick” or simply “cyclic.” On most helicopters, the cyclic is similar to a joystick. Although, the Robinson R-22 and R-44 have a unique teetering bar cyclic control system and a few helicopters have a cyclic control that descends into the cockpit from overhead. The control is called the cyclic because it can vary the pitch of the rotor blades throughout each revolution of the main rotor system (i.e., through each cycle of rotation) to develop unequal lift (thrust). The result is to tilt the rotor disk in a particular direction, resulting in the helicopter moving in that direction. If the pilot pushes the cyclic forward, the rotor disk tilts forward, and the rotor produces a thrust in the forward direction. If the pilot pushes the cyclic to the side, the rotor disk tilts to that side and produces thrust in that direction, causing the helicopter to hover sideways. [Figure 1-10]
The collective pitch control, or collective, is located on the
left side of the pilot’s seat with a pilot selected variable
friction control to prevent inadvertent movement. The
collective changes the pitch angle of all the main rotor blades collectively (i.e., all at the same time) and independently of their position. Therefore, if a collective input is made, all the blades change equally, increasing or decreasing total lift or thrust, with the result of the helicopter increasing or decreasing in altitude or airspeed.
The antitorque pedals are located in the same position as the rudder pedals in a fixed-wing aircraft, and serve a similar purpose, namely to control the direction in which the nose of the aircraft is pointed. Application of the pedal in a given direction changes the pitch of the tail rotor blades, increasing or reducing the thrust produced by the tail rotor and causing the nose to yaw in the direction of the applied pedal. The pedals mechanically change the pitch of the tail rotor, altering the amount of thrust produced.
Helicopter rotors are designed to operate at a specific rpm. The throttle controls the power produced by the engine, which is connected to the rotor by a transmission. The purpose of the throttle is to maintain enough engine power to keep the rotor rpm within allowable limits in order to keep the rotor producing enough lift for flight. In single-engine helicopters, the throttle control is a motorcycle-style twist grip mounted on the collective control while dual-engine helicopters have a power lever for each engine. [Figure 1-11] Helicopter flight controls are discussed in greater detail throughout Chapter 4, Helicopter Flight Controls.
Flight Conditions
There are two basic flight conditions for a helicopter—hover and forward flight. Hovering is the most challenging part of flying a helicopter. This is because a helicopter generates its own gusty air while in a hover, which acts against the fuselage and flight control surfaces. The end result is constant control inputs and corrections by the pilot to keep the helicopter where it is required to be. Despite the complexity of the task, the control inputs in a hover are simple. The cyclic is used to eliminate drift in the horizontal direction that is to control forward and back, right and left. The collective is used to maintain altitude. The pedals are used to control nose direction or heading. It is the interaction of these controls that makes hovering so difficult, since an adjustment in any one control requires an adjustment of the other two, creating a cycle of constant correction.
Displacing the cyclic forward causes the nose to pitch down initially, with a resultant increase in airspeed and loss of altitude. Aft cyclic causes the nose to pitch up initially, slowing the helicopter and causing it to climb; however, as the helicopter reaches a state of equilibrium, the horizontal stabilizer levels the helicopter airframe to minimize drag, unlike an airplane. [Figure 1-12] Therefore, the helicopter has very little pitch deflection up or down when the helicopter is stable in a flight mode. The variation from absolutely level depends on the particular helicopter and the horizontal stabilizer function. Increasing collective (power) while maintaining a constant airspeed induces a climb while decreasing collective causes a descent. Coordinating these two inputs, down collective plus aft cyclic or up collective plus forward cyclic, results in airspeed changes while maintaining a constant altitude. The pedals serve the same function in both a helicopter and a fixed-wing aircraft, to maintain balanced flight. This is done by applying a pedal input in whichever direction is necessary to center the ball in the turn and bank indicator. Flight maneuvers are discussed in greater detail throughout Chapter 9, Basic Flight Maneuvers.
直升机翻译 www.aviation.cn
本文链接地址:直升机飞行手册 Helicopter Flying Handbook