航空翻译_飞行翻译_民航翻译_蓝天飞行翻译公司

当前位置: 主页 > 直升机 > 直升机资料 >

直升机飞行手册 Helicopter Flying Handbook

时间:2014-11-09 12:30来源:FAA 作者:直升机翻译 点击:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.


The antitorque drive system consists of an antitorque drive shaft and a antitorque transmission mounted at the end of the tail boom. The drive shaft may consist of one long shaft or a series of shorter shafts connected at both ends with flexible couplings. This allows the drive shaft to flex with the tail boom. The tail rotor transmission provides a right angle drive for the tail rotor and may also include gearing to adjust the output to optimum tail rotor rpm. [Figure 4-15] Tail rotors may also have an intermediate gearbox to turn the power up a pylon or vertical fin.
Engines
Reciprocating Engines
Reciprocating engines, also called piston engines, are generally used in smaller helicopters. Most training helicopters use reciprocating engines because they are relatively simple and inexpensive to operate. Refer to the Pilot’s Handbook of Aeronautical Knowledge for a detailed explanation and illustrations of the piston engine.
Turbine Engines
Turbine engines are more powerful and are used in a wide variety of helicopters. They produce a tremendous amount of power for their size but are generally more expensive to operate. The turbine engine used in helicopters operates differently from those used in airplane applications. In most applications, the exhaust outlets simply release expended gases and do not contribute to the forward motion of the helicopter. Approximately 75 percent of the incoming airflow is used to cool the engine.
The gas turbine engine mounted on most helicopters is made up of a compressor, combustion chamber, turbine, and accessory gearbox assembly. The compressor draws filtered air into the plenum chamber and compresses it. Common type filters are centrifugal swirl tubes where debris is ejected outward and blown overboard prior to entering the compressor, or engine barrier filters (EBF), similar to the K&N filter element used in automotive applications. Although this design significantly reduces the ingestion of FOD, it is important for pilots to be aware of how much debris is actually being filtered. Operating in the sand, dust, or even in grassy type materials can choke an engine in just minutes. The compressed air is directed to the combustion section through discharge tubes where atomized fuel is injected into it. The fuel/air mixture is ignited and allowed to expand. This combustion gas is then forced through a series of turbine wheels causing them to turn. These turbine wheels provide power to both the engine compressor and the accessory gearbox. Depending on model and manufacturer, the rpm range can vary from a range low of 20,000 to a range high of 51,600.
Power is provided to the main rotor and tail rotor systems through the freewheeling unit which is attached to the accessory gearbox power output gear shaft. The combustion gas is finally expelled through an exhaust outlet. The temperature of gas is measured at different locations and is referenced differently by each manufacturer. Some common terms are: inter-turbine temperature (ITT), exhaust gas temperature (EGT), or turbine outlet temperature (TOT). TOT is used throughout this discussion for simplicity purposes. [Figure 4-16]
Compressor
The compressor may consist of an axial compressor, a centrifugal compressor, or combination of the two. An axial compressor consists of two main elements: the rotor and the stator. The rotor consists of a number of blades fixed on a rotating spindle and resembles a fan. As the rotor turns, air is drawn inward. Stator vanes are arranged in fixed rows between the rotor blades and act as a diffuser at each stage to decrease air velocity and increase air pressure. There may be a number of rows of rotor blades and stator vanes. Each row constitutes a pressure stage, and the number of stages depends on the amount of air and pressure rise required for the particular engine.
A centrifugal compressor consists of an impeller, diffuser, and a manifold. The impeller, which is a forged disc with integral blades, rotates at a high speed to draw air in and expel it at an accelerated rate. The air then passes through the diffuser, which slows the air down. When the velocity of the air is slowed, static pressure increases, resulting in compressed, high pressure air. The high pressure air then passes through the compressor manifold where it is distributed to the combustion chamber via discharge tubes.
直升机翻译 www.aviation.cn
本文链接地址:直升机飞行手册 Helicopter Flying Handbook