航空翻译_飞行翻译_民航翻译_蓝天飞行翻译公司

当前位置: 主页 > 直升机 > 直升机资料 >

直升机飞行手册 Helicopter Flying Handbook

时间:2014-11-09 12:30来源:FAA 作者:直升机翻译 点击:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.


Circuit breakers or fuses are used to protect various electrical components from overload. A circuit breaker pops out when its respective component is overloaded. The circuit breaker may be reset by pushing it back in, unless a short or the overload still exists. In this case, the circuit breaker continues to pop, indicating an electrical malfunction. A fuse simply burns out when it is overloaded and needs to be replaced. Manufacturers usually provide a holder for spare fuses in the event one has to be replaced in flight. Caution lights on the instrument panel may be installed to show the malfunction of an electrical component.
Hydraulics
Most helicopters, other than smaller piston-powered helicopters, incorporate the use of hydraulic actuators to overcome high control forces. [Figure 4-23] A typical hydraulic system consists of actuators, also called servos, on each flight control, a pump which is usually driven by the main rotor transmission and a reservoir to store the hydraulic fluid. Some helicopters have accumulators located on the pressure side of the hydraulic system. This allows for a continuous fluid pressure into the system. A switch in the cockpit can turn the system off, although it is left on under normal conditions. When the pilot places the hydraulic switch/circuit breaker into the on position, the electrical power is being removed from the solenoid valve allowing hydraulic fluid to enter the system. When the switch/circuit
breaker is put in the off position, the solenoid valve is now de-energized and closes, which then allows the pilot to maintain control of the helicopter with the hydraulic fluid in the actuators. This is known as a failsafe system. If helicopter electrical power is lost in flight, the pilot is still able to maintain control of the hydraulic system. A pressure indicator in the cockpit may also be installed to monitor the system.
When making a control input, the servo is activated and provides an assisting force to move the respective flight control, thus reducing the force the pilot must provide. These boosted flight controls ease pilot workload and fatigue. In the event of hydraulic system failure, a pilot is still able to control the helicopter, but the control forces are very heavy.
In those helicopters in which the control forces are so high that they cannot be moved without hydraulic assistance, two or more independent hydraulic systems may be installed. Some helicopters use hydraulic accumulators to store pressure, which can be used for a short period of time in an emergency if the hydraulic pump fails. This gives you enough time to land the helicopter with normal control.
Stability Augmentations Systems
Some helicopters incorporate a stability augmentation system (SAS) to help stabilize the helicopter in flight and in a hover. The original purpose and design allowed decreased pilot work load and lessened fatigue. It allowed pilots to place an aircraft at a set attitude to accomplish other tasks or simply stabilize the aircraft for long cross-country flights.
Force Trim
Force trim was a passive system that simply held the cyclic in a position that gave a control force to transitioning airplane pilots who had become accustomed to such control forces. The system uses a magnetic clutch and springs to hold the cyclic control in the position where it was released. The system does not use sensor-based data to make corrections, but rather is used by the pilot to “hold” the cyclic in a desired position. The most basic versions only applies to the cyclic requiring the pilot to continue power and tail rotor inputs. With the force trim on or in use, the pilot can override the system by disengaging the system through the use of a force trim release button or, with greater resistance, can physically manipulate the controls. Some recent basic systems are referred to as attitude retention systems.
Active Augmentation Systems
Actual systems use electric actuators that provide input to the hydraulic servos. These servos receive control commands from a computer that senses external environmental inputs, such as wind and turbulence. SAS complexity varies by manufacturer, but can be as sophisticated as providing three axis stability. That is, computer based inputs adjust attitude, power and aircraft trim for a more stabilized flight.
直升机翻译 www.aviation.cn
本文链接地址:直升机飞行手册 Helicopter Flying Handbook