航空翻译_飞行翻译_民航翻译_蓝天飞行翻译公司

当前位置: 主页 > 直升机 > 直升机资料 >

直升机飞行手册 Helicopter Flying Handbook

时间:2014-11-09 12:30来源:FAA 作者:直升机翻译 点击:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.


Swash Plate Assembly
The purpose of the swash plate is to convert stationary control inputs from the pilot into rotating inputs which can be connected to the rotor blades or control surfaces. It consists of two main parts: stationary swash plate and rotating swash plate. [Figure 4-10]
The stationary swash plate is mounted around the main rotor mast and connected to the cyclic and collective controls by a series of pushrods. It is restrained from rotating by an anti-drive link but can tilt in all directions and move vertically. The rotating swash plate is mounted to the stationary swash plate by means of a uniball sleeve. It is connected to the mast by drive links and must rotate in constant relationship with the main rotor mast. Both swash plates tilt and slide up and down as one unit. The rotating swash plate is connected to the pitch horns by the pitch links.
Freewheeling Unit
Since lift in a helicopter is provided by rotating airfoils, these airfoils must be free to rotate if the engine fails. The freewheeling unit automatically disengages the engine from the main rotor when engine revolutions per minute (rpm) is less than main rotor rpm. [Figure 4-11] This allows the main rotor and tail rotor to continue turning at normal in-flight speeds. The most common freewheeling unit assembly consists of a one-way sprag clutch located between the engine and main rotor transmission. This is usually in the upper pulley in a piston helicopter or mounted on the accessory gearbox in a turbine helicopter. When the engine is driving the rotor, inclined surfaces in the sprag clutch force rollers against an outer drum. This prevents the engine from exceeding transmission rpm. If the engine fails, the rollers move inward, allowing the outer drum to exceed the speed of the inner portion. The transmission can then exceed the speed of the engine. In this condition, engine speed is less than that of the drive system, and the helicopter is in an autorotative state.
Antitorque System
Helicopters with a single, main rotor system require a separate antitorque system. This is most often accomplished through a variable pitch, antitorque rotor or tail rotor. [Figure 4-12] Pilots vary the thrust of the antitorque system to maintain directional control whenever the main rotor torque changes, or to make heading changes while hovering. Most helicopters drive the tail rotor shaft from the transmission to ensure tail rotor rotation (and hence control) in the event that the engine quits. Usually, negative antitorque thrust is needed in autorotations to overcome transmission friction.
Fenestron
Another form of antitorque system is the fenestron or “fan-in-tail” design. This system uses a series of rotating blades shrouded within a vertical tail. Because the blades are located within a circular duct, they are less likely to come into contact with people or objects. [Figure 4-13]
NOTAR.
Using the natural characteristics of helicopter aerodynamics, the NOTAR antitorque system provides safe, quiet, responsive, foreign object damage (FOD) resistant directional control. The enclosed variable-pitch composite blade fan produces a low pressure, high volume of ambient air to pressurize the composite tailboom. The air is expelled through two slots which run the length of the tailboom on the right side, causing a boundary-layer control called the Coanda effect. The result is that the tailboom becomes a “wing,” flying in the downwash of the rotor system, producing up to 60 percent of the antitorque required in a hover. The balance of the directional control is accomplished by a rotating direct jet thruster. In forward flight, the vertical stabilizers provide the majority of the antitorque; however, directional control remains a function of the direct jet thruster. The NOTAR antitorque system eliminates some of the mechanical disadvantages of a tail rotor, including long drive shafts, hanger bearings, intermediate gearboxes and 90° gearboxes.
[Figure 4-14]
Antitorque Drive Systems
直升机翻译 www.aviation.cn
本文链接地址:直升机飞行手册 Helicopter Flying Handbook