航空翻译_飞行翻译_民航翻译_蓝天飞行翻译公司

当前位置: 主页 > 直升机 > 直升机资料 >

直升机飞行手册 Helicopter Flying Handbook

时间:2014-11-09 12:30来源:FAA 作者:直升机翻译 点击:

To view this page ensure that Adobe Flash Player version 9.0.124 or greater is installed.


Collective pitch reduction aids in arresting the yaw rate but may cause an excessive rate of descent. Any large, rapid increase in collective to prevent ground or obstacle contact may further increase the yaw rate and decrease rotor rpm. The decision to reduce collective must be based on the pilot’s assessment of the altitude available for recovery.
If the rotation cannot be stopped and ground contact is imminent, an autorotation may be the best course of action. Maintain full left pedal until the rotation stops, then adjust to maintain heading. For more information on LTE, see Advisory Circular (AC) 90-95, Unanticipated Right Yaw in Helicopters.
Main Drive Shaft or Clutch Failure
The main drive shaft, located between the engine and the main rotor gearbox, transmits engine power to the main rotor gearbox. In some helicopters, particularly those with piston engines, a drive belt is used instead of a drive shaft. A failure of the drive shaft clutch or belt has the same effect as an engine failure because power is no longer provided to the main rotor and an autorotation must be initiated. There are a few differences, however, that need to be taken into consideration. If the drive shaft or belt breaks, the lack of any load on the engine results in an overspeed. In this case, the throttle must be closed in order to prevent any further damage. In some helicopters, the tail rotor drive system continues to be powered by the engine even if the main drive shaft breaks. In this case, when the engine unloads, a tail rotor overspeed can result. If this happens, close the throttle immediately and enter an autorotation. The pilot must be knowledgeable of the specific helicopter’s system and failure modes.
Pilots should keep in mind that when there is any suspected mechanical malfunction, first and foremost they should always attempt to maintain rotor RPM. If the rotor RPM is at the normal indication with normal power settings, an instrument failure might be occurring and it would be best to fly the helicopter to a safe landing area. If the rotor RPM is in fact decreasing or low, then there is a drive line failure.
Hydraulic Failure
Many helicopters incorporate the use of hydraulic actuators to overcome high control forces. A hydraulic system consists of actuators, also called servos, on each flight control; a pump, which is usually driven by the main rotor gearbox; and a reservoir to store the hydraulic fluid. A switch in the cockpit can turn the system off, although it is left on during normal conditions. A pressure indicator in the cockpit may be installed to monitor the system.
An impending hydraulic failure can be recognized by a grinding or howling noise from the pump or actuators, increased control forces and feedback, and limited control movement. The required corrective action is stated in detail in the appropriate RFM. However, in most cases, airspeed needs to be reduced in order to reduce control forces. The hydraulic switch and circuit breaker should be checked and recycled. If hydraulic power is not restored, make a shallow approach to a running or roll-on landing. This technique is used because it requires less control force and pilot workload. Additionally, the hydraulic system should be disabled by placing the switch in the off position. The reason for this is to prevent an inadvertent restoration of hydraulic power, which may lead to overcontrolling near the ground.
In those helicopters in which the control forces are so high that they cannot be moved without hydraulic assistance, two or more independent hydraulic systems are installed. Some helicopters use hydraulic accumulators to store pressure that can be used for a short time while in an emergency if the hydraulic pump fails. This gives enough time to land the helicopter with normal control.
Governor or Fuel Control Failure
Governors and fuel control units automatically adjust engine power to maintain rotor rpm when the collective pitch is changed. If the governor or fuel control unit fails, any change in collective pitch requires manual adjustment of the throttle to maintain correct rpm. In the event of a high side failure, the engine and rotor rpm tend to increase above the normal range. If the rpm cannot be reduced and controlled with the throttle, close the throttle and enter an autorotation. If the failure is on the low side, normal rpm may not be attainable, even if the throttle is manually controlled. In this case, the collective has to be lowered to maintain rotor rpm. A running or roll-on landing may be performed if the engine can maintain sufficient rotor rpm. If there is insufficient power, enter an autorotation. As stated previously in this chapter, before responding to any type of mechanical failure, pilots should confirm that rotor rpm is not responding to flight control inputs. If the rotor rpm can be maintained in the green operating range, the failure is in the instrument, and not mechanical.
直升机翻译 www.aviation.cn
本文链接地址:直升机飞行手册 Helicopter Flying Handbook