航空翻译_飞行翻译_民航翻译_蓝天飞行翻译公司

当前位置: 主页 > 航空新闻 > 通用航空 >

无人机集群技术研究现状与趋势

时间:2020-08-08 15:52来源:无人机集群 作者:中国通航

 
       1.2.4 无人机集群编队队形研究现状
 
       合理的无人机编队队形既能保证无人机集群在安全条件下快速完成集群任务,又能节省无人机的动力。Zhou Z W等基于对雁群的观察和研究,讨论了无人机编队飞行与雁群飞行间的仿生理论,提出了仿雁群飞行方式的多无人机紧密编队与控制方法理论。该方法能有效增加无人机编队飞行的稳定性,并且能减少集群无人机能量消耗。叶圣涛等人针对无人机集群自主编队中的算法复杂、信息交互量大的问题,提出了基于智能突现下的分布式无人机集群编队控制策略,建立了集群无人机模型,能够使无人机在复杂条件下形成稳定的多机编队,但在该研究中没有考虑通信延迟、数据丢包和通信噪声的问题。井田等人针对传统无人机集群在侦查中难以自适应调整以匹配不同侦察环境的问题,提出基于区域信息熵的“数字草皮”及其植物量变化模型,并设计了目标区域—无人机集群持续侦察体系中的规模控制方法。该方法能在复杂的任务背景下,提高无人机集群编队的可重构性和柔性。
 
       陈杰敏等基于主从式编队与通信拓扑理论,建立了二阶一致性编队控制系统,保证了无人机编队的稳定飞行。
 
       1.2.5 无人机集群控制策略研究现状
 
       无人机集群控制策略是无人机集群的基础,能够解决不同类型无人机在集群编队、队形保持与重构等相关集群问题。李欣等人针对控制对象的不确定性、目标任务的复杂多变提出了集群智能控制的概念。
 
       段海滨等基于生物群集和无人机集群相似性出发,分析了二者自主控制的对应关系,并探讨了仿生物群集的无人机集群自主控制中的核心问题。罗德林等人为提高大规模无人机集群对抗策略的有效性,提出将多agent系统应用到无人机集群系统中,将系统中单机视为独立的agent,建立无人机独立的单机行为集。景晓年等为解决无人机集群的运动控制问题,基于无人机的避碰、聚集和速度匹配规则,提出一种基于规则的运动控制方法,并根据规则建立了集群动力学模型和运动控制模型。朱创创等人基于分层控制和封装的思想,将无人机控制系统分为执行层和决策层。应用领导—跟随协同编队控制算法,搭建了分布式控制的无人机集群编队控制演示验证系统。

       2 国内外无人机集群技术研究差异
 
       国外对无人机集群技术的研究开始较早,侧重于无人机集群技术的整体性研究。主要对无人机集群技术中的无人机集群结构框架、控制与优化技术、任务管理与协同等进行深入研究,并且取得了一定的成效。如美国国防部高级研究计划局主导的自主编队混合控制项目(MICA),该项目对协同任务分配、协同路径规划、混合主动与自主编队控制、协同跟踪、信息共享等有关无人机集群的技术进行全面的研究。美国广域搜索弹药项目(Wide Area Search Munitions,WASM)通过建立Multi UAV协同控制仿真平台,采用分层控制与优化技术,研究了复杂任务背景下如何增强无人机集群协同全域搜索与打击能力。2006年,美国空军技术研究院基于进化机制的同构或异构的无人机集群自组织行为,建立自组织框架,使集群无人机通过自然选择和遗传变异,实现自身和行为的不断优化,产生对环境和作战任务的自适应能力。
 
       国内由于现有技术的限制,无人机集群技术整体研究处于起步阶段,但对多无人机自主协同控制中的信息感知与传输、编队与队形、避障与避碰等技术研究较为深入,理论成果较多。其中采用基于分层递阶的方法进行协同控制的研究取得的成果最多。如在多机协同方面,基于分层递阶控制思想,研究了多机任务分配、多机航迹规划、多机编队控制等内容。在群体智能研究方面,北京航空航天大学段海滨教授长期从事基于仿生智能的无人机自主控制研究,研究成果显著,主要研究了基于生物群集行为特性,建立了鸽群、雁群、狼群等典型生物群体智能模型,研究了从生物群体智能到无人机集群控制的理论映射。
 
       3 无人机集群发展的关键技术
 
       无人机集群对环境的对抗性和任务的复杂性,决定了无人机集群必须具有高度的自主能力和协同能力。生物界中欧椋鸟群、鸽群、狼群、蚁群等生物群体在集群活动中都表现为群体智能。无人机集群智能研究建模中,往往进行简化,忽略了历史因素对个体的影响,将其简化为当前状态的运动决策系统。应将实际的因素加入群体智能,如视觉感知、集群中单机对外部不良因素的快速准确反应以及个体间的交互等,充分考虑各种因素对群体智能的影响。综合分析可以看出无人机集群技术发展的一些关键技术。
 
       3.1 无人机集群态势感知与信息共享
 
       无人机集群的态势感知与信息共享是无人机集群自主控制与决策的基础。对于无人机集群来说,集群系统中的单机既是通信的网络节点,又是信息感知与处理的节点。不同单机可搭载不同的传感器获取不同范围、不同维度的信息,单机间通过相互间的密切协同,可以将不同无人机的信息进行融合、共享,为集群系统决策提供信息支持。无人机集群信息共享利用其集群飞行的通信系统,不仅能够应对强电磁干扰下的通信延迟、丢包等情况,还能将感知到的信息传递给其他个体,从而避免因单机感知能力、信息处理能力的限制导致集群系统功能的低下。
 
       3.2 无人机集群编队与智能决策控制
 
       编队是无人机集群执行任务的形式和基础。在无人机集群编队的控制中要解决两个关键问题:一是编队的生成与保持,不同几何图形的队形生成与变换,编队队形不变情况下的收缩、扩张以及旋转等;二是避障以及避碰时队形的动态调整与重构,如遇到障碍时队形的分离与结合,成员增加或减少时的队形调整等。
 
       无人机集群智能决策控制是实现无人机集群优势的核心。针对复杂的环境,动态的任务目标、威胁等无人机集群需具备实时任务调整和路径规划的能力,除态势感知与信息共享外,还需实现无人机集群智能决策控制,以快速响应动态变化,提高无人机集群完成任务的效率和鲁棒性。
 
       3.3 无人机集群中有人机与无人机协同技术
 
       由于无人机集群技术理论研究与发展限制,短时间内实现无人机的全自主智能控制难度较大。有人机与无人机的异构机型集群协同是一个重要集群技术,有人机与无人机集群协同不等同于一般的不同类型的简单协同。人工智能与人类智能、有人系统与无人系统的深度融合协同将成为未来无人机集群技术发展的重要方向。集群系统中有人机与无人机的协同实现了无人机进行态势信息感知和有人机进行任务判断决策空间上的分离,可完成高难度、危险系数高、复杂条件下的任务。
飞行翻译 www.aviation.cn
本文链接地址:无人机集群技术研究现状与趋势